
The	Design	Recipe	using	Classes

CS	5010	Program	Design	Paradigms
"Bootcamp"
Lesson	9.5

1
©	Mitchell	Wand,	2012-2015
This	work	is	licensed	under	a	Creative Commons Attribution-NonCommercial 4.0 International License.

Goals	of	this	lesson

• See	how	the	design	recipe	and	its	deliverables	
should	appear	in	an	object-oriented	system

• Note:		this	is	about	OUR	coding	standards.		
Your	workplace	may	have	different	standards.

2

Let's	review	the	Design	Recipe

3

The	Function	Design	Recipe
1.	Data	Design
2.	Contract	and	Purpose	Statement
3. Examples	and	Tests
4.	Design	Strategy
5.	Function	Definition
6.	Program Review

In	an	OO	system,	the	steps	are	a	little	
different,	but	they	are	all	there

The	Object-Oriented	Design	Recipe
Step Description
1.	Interface	Design Identify	the	kinds	of things	in	your	system	and	

the	messages	they	need	to	respond	to.		For	
each	method	in	an	interface,	write	a	contract	
and	purpose	statement.

2.	Class	Design Identify	the	kinds	of	things	that may	be	behind	
each	interface.		For	each	class,	give	a	purpose	
statement.		For	each	field	of	a	class,	give	an	
interpretation.

3.	Method	Design For	each	method,	copy down	the	contract	and	
purpose	statement	from	the	 interface.		
Specialize	the	purpose	statement	to	specify	
how	the	purpose	 is	fulfilled	for	this	class.	
Include	examples	as	needed.

4.	Unit Tests For each	class,	write	tests	that	exercise	every	
method

5.	Program	Review Same	as	before 4

Step	1:		Interface	Design

• What	kinds	of	things	will	exist	in	your	system?
• What		messages	will	they	need	to	respond	to?
• List	the	messages	(methods)	in	each	interface
• Write	a	purpose	statement	for	the	interface
• For	each	method	in	the	interface,	write	a	
contract	and	purpose	statement.

• Write	the	contracts	in	terms	of	data	types	and	
interfaces	(never	classes).

5

Example	1:	StupidRobot<%>
;; A StupidRobot represents a robot moving along a one-dimensional line,
;; starting at position 0.

(define StupidRobot<%>
(interface ()

;; -> StupidRobot<%>
;; RETURNS: a Robot just like this one, except moved one
;; position to the right
move-right

;; -> Integer
;; RETURNS: the current x-position of this robot
get-pos

))

Purpose	statement	
for	the	interface

Example	2:	Widget<%>
;; Every object that lives in the world must implement the Widget<%>
;; interface.

(define Widget<%>
(interface ()

; -> Widget
; GIVEN: no arguments
; RETURNS: the state of this object that should follow at time t+1.
after-tick

; Integer Integer -> Widget
; GIVEN: a location
; RETURNS: the state of this object that should follow the
; specified mouse event at the given location.
after-button-down
after-button-up
after-drag

; KeyEvent -> Widget
; GIVEN: a key event
; RETURNS: the state of this object that should follow the
; given key event
after-key-event

; Scene -> Scene
; GIVEN: a scene
; RETURNS: a scene like the given one, but with this object
; painted on it.
add-to-scene
))

7

Another	way	to	write	a	
purpose	statement	for	an	

interface

Step	2:	Class	Design

• For	each	interface,	consider	the	different	kinds	of	
objects	that	will	implement	this	interface.		Each	
kind	becomes	a	class.

• For	each	class,	include	a	purpose	statement	that	
says	what	information	is	represented	by	objects	
of	that	class.

• For	each	class,	give	a	constructor		template	
showing	how	to	build	an	object	of	that	class.

• Each	field should	have	an	interpretation,	just	as	
every	field	in	a	struct has	an	interpretation.

8

Example
;; A Bomb is a (new Bomb% [x Integer][y Integer])
;; A Bomb represents a bomb.
;; A bomb just falls. It has no other behavior.

(define Bomb%
(class* object% (Widget<%>)
(init-field x y) ; the bomb's x and y position

;; image for displaying the bomb
(field [BOMB-IMG (circle 10 "solid" "red")])
;; the bomb's speed, in pixels/tick
(field [BOMB-SPEED 8])

9

What	happened	to	the	template?

• The	object	system	does	all	the	cond's for	you.
• All	that's	left	for	you	to	do	is	to	write	the	right-
hand	side	of	each	cond-line.
– You	can	use	fields	instead	of	selectors.
– So	there's	no	need	for	a	separate	template!	(Yay!)		

10

Coding	Standards

• Every	method	in	the	class	(defined	with	
define/public)	MUST	be	listed	in	the	interface.

• Exception:	methods	named	for-test:...	 These	
methods	may	only	be	used	for	testing	and		
debugging.

• You	may	have	functions	(defined	with	define)	
in	your	class.			These	will	be	private	to	the	
class.

11

Coding	Standards	Illustrated
;; A Foo is an object of any class that implements Foo<%>

(define Foo<%>
(interface ()

; -> Integer
; purpose statement omitted...
m1

; Bar -> Foo<%>
; purpose statement omitted...
add-bar))

(define Class1%
(class* object% (Foo<%>)

(init-field a b c)
;; interpretations omitted...

(field [LOCAL-CONSTANT ...])
;; interpretation omitted

(super-new)

; m1 : -> Integer
; purpose statement omitted...
(define/public (m1) ...)

; add-bar : Bar -> Foo<%>
(define/public (add-bar b) ...)

(define/public (method-not-in-interface ...) ...)

(define (function1 ...) a b c this ...)
(define (function2 ...) a b c this ...)

;; for-test:... methods don't need to be
;; in the interface

(define/public (for-test:test-fcn1 ...) ...)

))

12

Constants	used	only	
in	one	class	should	

be	fields.

No	methods	except	those	
listed	in	the	interface

If	you	 think	you	need	a	private	
method,	use	a	function	 instead.		
Functions	can	refer	to	fields	and	
to	this.;	these	functions	will	not	
be	accessible	outside	the	class

Exception:	methods	named	for-
test:... need	not	be	in	the	

interface,	but	they	may	only	be	
used	for	testing.

Interfaces	and	Classes	
should	also	have	

purpose	statements;	
these	are	omitted	

here.

Step	3:	Method	Design
• Each	method	definition	should	have	a	contract	
that	is	the	same	as	the	contract	in	the	interface.

• A	method	may	have	a	purpose	statement	that	
specializes	the	purpose	statement	in	the	interface	
to	the	current	class.

• Each	method	should	have	examples	if	needed		to	
clarify	the	purpose	statement.

• Each	method	should	have	associated	tests.		These	
will	occur	later	in	the	file,	with	the	unit	tests.

• Document	your	method	with	a	strategy	if	needed	
for	explanation.

13

Remember,	 	a	strategy	is	a	
tweet-sized	description	of	how	

your	function	 works

Contract	and	Purpose	Statement	in	
Class

(define Bomb%
(class* object% (Widget<%>)

...
;; after-tick : -> Widget<%>
;; RETURNS: A bomb like this one, but as it should be after a tick
;; DETAILS: the bomb moves vertically by BOMB-SPEED
(define/public (after-tick)
(new Bomb% [x x][y (+ y BOMB-SPEED)]))

14

Since	Bomb%		implements	the	Widget<%>	
interface,	the	value	of	(after-tick)	is	a	

Widget.		So	after-tick satisfies	its	contract.	

Here’s	an	example	of	a	refined	
purpose	statement

This	one	is	so	simple	it	
doesn’t	need	any	

examples.

Examples	and	Tests

• Examples	and	tests	will	generally	be	different.
• Put	examples	with	the	method.
• Phrase	examples	in	terms	of	information	(not	
data)	whenever	possible.

• Use	meaningful	names,	etc.,	just	as	before.

15

Step	4:	Unit	Tests

• Write	tests	for	a	class	after	each	class,	or	at	the	
end	of	your	file,	whichever	is	clearer.

• Don’t	use	equal?	on	objects.		Test	observable	
behavior	instead,	as	we	did	in	the	preceding	
lesson.

• Construct	testing	scenarios	and	check	to	see	that	
your	objects	have	the	right	observable	values	
afterwards.

• We	still	want	100%	expression	coverage,	except	
for	calls	to	big-bang.

16

What	happened	to	the	strategy?

• In	the	interests	of	keeping	your	workload	
down,	we	will	not	require	you	to	write	down	
design	strategies	for	most	methods.

• Write	down	strategies	when	they’re	helpful.

17

Simple	method	definitions	don't	need	
design	strategies

(define/public (weight) (* l l))

(define/public (volume)
(* (send this height)

(send this area)))

18

Method	definitions	that	don't	need	
design	strategies	(2)

(define/public (weight)
(+ (send front weight)

(send back weight)))

(define/public (volume other-obj)
(* (send other-obj area)

(send other-obj height)))

19

You	could	call	this	“recur	on	front	and	back”		if	
you	wanted,	but	you	don’t	 have	to.

This	also	doesn't	need	a	design	
strategy,	but	it	might	help

;; STRATEGY: Use HOF map to send after-tick to each of the
;; widgets

(define/public (after-tick)
(new World%
[widgets (map

(lambda (widget) (send widget after-tick))
widgets)]))

20

Another	method		where	the	design	
strategy	is	optional

;; STRATEGY: Cases on MouseEvent mev

(define/public (after-mouse-event mx my mev)
(cond
[(mouse=? mev "button-down") ...]
[(mouse=? mev "drag") ...]
[(mouse=? mev "button-up") ...]
[else ...]))

21

Complicated	things	need	strategies	to		
document	them

(define Graph%
(class* object% ()

...

(define/public (path? src tgt)
(local
((define (reachable-from? newest nodes)

;; RETURNS: true iff there is a path from src to tgt in this graph
;; INVARIANT: newest is a subset of nodes
;; AND:
;; (there is a path from src to tgt in this graph)
;; iff (there is a path from newest to tgt)
;; STRATEGY: recur on successors of newest; halt when tgt is
;; found.
;; HALTING MEASURE: the number of graph nodes _not_ in 'nodes'
(cond
[(member tgt newest) true]
[else (local

((define candidates (set-diff
(send this all-successors newest)
nodes)))

...etc...

22

Here's	path? as	a	method	of	a	Graph%
class.		It	still	uses	general	recursion,	 so	
we	must	document	 that	fact,	and	also	
provide	all	the	usual	deliverables	for	
general	recursion.

We're	talking	about	"this"	graph"

Instead	of	saying	(all-successors	newest	graph)	,	
we	made	all-successors a	method	of	Graph%	,	

and	we	asked	it	to	work	on	this graph.

Design	Strategies	turn	into Patterns

• In	OO	world,	the	important	design	strategies	
are	at	the	class	level.

• Examples:
– interpreter	pattern		(basis	for	our	DDèOO	recipe)
– composite	pattern	(eg,	composite	shapes)
– container	pattern	(we'll	use	this	shortly)
– template-and-hook	pattern	(later)

23

• Same	as	before:

Step	6:	Program	Review

24

The	Program	Review	Recipe
1.	Do	all	the	tests	pass?
2.	Are	the	contracts	accurate?
3.	Are	the purpose	statements	and	interpretations	clear	
and	accurate?
4.	Are	there	ugly	pieces	of	code	that	should	be	broken out	
into	their	own	functions?
5.	Are	there	pieces	of	code that	are	duplicated	(or	almost	
duplicated)	and	should	be	made	into	independent	
functions?

Summary

• The	Design	Recipe	is	still	there,	but	the	
deliverables	are	in	different	places

• You	should	now	be	able	to	identify	where	
each	of	the	deliverables	go	in	an	object-
oriented	program

25

Next	Steps

• Study	the	files	in	the	Examples	folder.		Did	we	
get	all	the	deliverables	in	the	right	places?

• If	you	have	questions	about	this	lesson,	ask	
them	on	the	Discussion	Board.

26

